我们考虑经典的1中心问题:给定度量空间中的n个点P,找到p中的点,最小化到P的其他要点的最大距离。我们研究了D维$ \中这个问题的复杂性。 ell_p $ -metrics和编辑和ulam度量串的长度d。我们的1中心问题的结果可以根据D分类如下。 $ \ bullet $ small d:我们提供固定维度$ \ ell_1 $指标中的1中心问题的第一线性时间算法。另一方面,假设击中集猜测(HSC),我们显示,当$ d =ω(\ log n)$时,没有子种式算法可以在任何$ \ ell_p $ -metrics中解决1中心问题,或者在编辑或ulam指标中。 $ \ bullet $大d。当$ d =ω(n)$时,我们将条件下限扩展到编辑度量标准中的1中心问题的子四分之一算法(假设量化SETH)。另一方面,我们给出了一个$(1+ \ epsilon)$ - ulam度量标准中的1美元逼近,运行时间$ \ tilde {o _ {\ epsilon}}(nd + n ^ 2 \ sqrt {d}) $。我们还通过允许近似或通过减小维度D来加强一些上述下限,而是仅针对列出所有必要解决方案的较弱的算法类别。此外,我们扩展了我们的硬度结果,以便在编辑度量标准中排除次级学习的1中位问题的亚级算法,其中给出了一组长度n的n个字符串,目标是在集合中找到一个字符串这最小化了集合中的其余字符串的编辑距离之和。
translated by 谷歌翻译
Recently, many attempts have been made to construct a transformer base U-shaped architecture, and new methods have been proposed that outperformed CNN-based rivals. However, serious problems such as blockiness and cropped edges in predicted masks remain because of transformers' patch partitioning operations. In this work, we propose a new U-shaped architecture for medical image segmentation with the help of the newly introduced focal modulation mechanism. The proposed architecture has asymmetric depths for the encoder and decoder. Due to the ability of the focal module to aggregate local and global features, our model could simultaneously benefit the wide receptive field of transformers and local viewing of CNNs. This helps the proposed method balance the local and global feature usage to outperform one of the most powerful transformer-based U-shaped models called Swin-UNet. We achieved a 1.68% higher DICE score and a 0.89 better HD metric on the Synapse dataset. Also, with extremely limited data, we had a 4.25% higher DICE score on the NeoPolyp dataset. Our implementations are available at: https://github.com/givkashi/Focal-UNet
translated by 谷歌翻译
本文总结并评估了追求人工智能(AI)系统公平性的各种方法,方法和技术。它检查了这些措施的优点和缺点,并提出了定义,测量和防止AI偏见的实际准则。特别是,它警告了一些简单而常见的方法来评估AI系统中的偏见,并提供更复杂和有效的替代方法。该论文还通过在高影响力AI系统的不同利益相关者之间提供通用语言来解决该领域的广泛争议和困惑。它描述了涉及AI公平的各种权衡,并提供了平衡它们的实用建议。它提供了评估公平目标成本和收益的技术,并定义了人类判断在设定这些目标中的作用。本文为AI从业者,组织领导者和政策制定者提供了讨论和指南,以及针对更多技术受众的其他材料的各种链接。提供了许多现实世界的例子,以从实际角度阐明概念,挑战和建议。
translated by 谷歌翻译
深度学习一直是近来最具破坏性的技术进步之一。深度学习模型的高性能以高度计算,存储和功率要求为代价。感知到加速和压缩这些模型以提高设备性能的直接需求,我们引入了Deeplite Neutrino,以便对模型的生产优化和Deeplite运行时进行介绍,以在基于ARM的平台上部署超低位量化模型。我们为ARMV7和ARMV8架构实施低级量化内核,可在32位和64位基于ARM的设备上进行部署。通过使用矢量化,并行化和平铺的有效实现,与具有XNNPACK后端的TensorFlow Lite相比,我们在分类和检测模型上分别实现了高达2倍和2.2倍的速度。与ONNX运行时相比,我们还获得了高达5倍和3.2倍的显着加速,分别用于分类和检测模型。
translated by 谷歌翻译
在本文中,我们研究了DNN培训中量化的影响。我们假设重量量化是正则化的一种形式,正则化的量与量化水平(精度)相关。我们通过提供分析研究和经验结果来证实我们的假设。通过将重量量化为重量噪声的一种形式,我们探讨了该噪声在训练时如何通过网络传播。然后,我们表明该噪声的大小与量化水平相关。为了确认我们的分析研究,我们在本文中进行了广泛的实验列表,其中我们表明,在各种数据集中,在各种视觉任务和模型中可以看到量化的正则化效果。基于我们的研究,我们建议8位量化在不同的视觉任务和模型中提供了一种可靠的正则化形式。
translated by 谷歌翻译
当前,随机化是用于机器人技术中数据驱动的学习算法的SIM2REAL传输中广泛使用的方法。尽管如此,大多数SIM2REAL研究报告了特定随机技术的结果,并且通常是在高度定制的机器人系统上,因此很难系统地评估不同的随机方法。为了解决这个问题,我们为机器人触及余量操纵器任务定义了易于制作的实验设置,该设置可以作为比较的基准。我们将四个随机策略与模拟和真实机器人中的三个随机参数进行比较。我们的结果表明,更多的随机化有助于SIM2REAL转移,但它也可能损害算法在模拟中找到良好策略的能力。完全随机的仿真和微调显示出差异化的结果,并且比测试的其他方法更好地转化为实际机器人。
translated by 谷歌翻译
现代深度学习需要大规模广泛标记的数据集进行培训。少量学习旨在通过有效地从少数标记的例子中学习来缓解这个问题。在先前提出的少量视觉分类器中,假设对分类器决定的特征歧管具有不相关的特征尺寸和均匀特征方差。在这项工作中,我们专注于通过提出以低标签制度运行的差异敏感的模型来解决这一假设引起的限制。第一种方法简单的CNAP,采用基于分层正规的Mahalanobis距离基于距离的分类器,与现有神经自适应特征提取器的状态相结合,以在元数据集,迷你成像和分层图像基准基准上实现强大性能。我们进一步将这种方法扩展到转换学习设置,提出转导压盖。这种转换方法将软k-means参数细化过程与两步任务编码器相结合,以实现使用未标记数据的改进的测试时间分类精度。转导CNAP在元数据集上实现了最先进的性能。最后,我们探讨了我们的方法(简单和转换)的使用“开箱即用”持续和积极的学习。大规模基准的广泛实验表明了这一点的鲁棒性和多功能性,相对说话,简单的模型。所有培训的模型检查点和相应的源代码都已公开可用。
translated by 谷歌翻译
事物互联网(物联网)是一个由嵌入式传感器和服务网络为特征的范例。结合了这些传感器以收集各种信息,跟踪物理条件,例如废物箱状态,并使用不同的集中平台交换数据。对这种传感器的需求正在增加;然而,技术的扩散具有各种挑战。例如,如何使用IoT及其相关数据来增强废物管理?在智能城市,有效的废物管理系统至关重要。人工智能(AI)和启用IOT的方法可以赋予城市管理废物收集。这项工作提出了一种在给定空间约束的支持物联网的废物管理系统中提供推荐的智能方法。它基于基于AI的方法进行彻底的分析,并比较它们的相应结果。我们的解决方案基于多级决策过程,其中考虑到箱子状态和坐标以解决路由问题。这种基于AI的模型可以帮助工程师设计可持续的基础设施系统。
translated by 谷歌翻译
仿制学习是通过利用专家驱动程序演示的数据来学习自主驾驶政策的强大方法。然而,通过模仿学习训练的驾驶政策忽视专家演示的因果结构产生了两个不良行为:惯性和碰撞。在本文中,我们提出了因果模拟模型(CIM)来解决惯性和碰撞问题。CIM明确发现了因果模型,并利用它来培训政策。具体而言,CIM将输入解散到一组潜在变量,选择因果变量,并通过利用所选变量来确定下一个位置。我们的实验表明,我们的方法在惯性和碰撞率方面优于以前的工作。此外,由于利用因果结构,CIM仅将输入维度缩小到两个,因此,可以在几次拍摄设置中适应新环境。代码可在https://github.com/vita -epfl/cim使用。
translated by 谷歌翻译
现在是车辆轨迹预测是自动驾驶汽车的基本支柱。行业和研究社区都通过运行公共基准来承认这一柱的需求。而最先进的方法令人印象深刻,即,他们没有越野预测,他们对基准之外的城市的概括是未知的。在这项工作中,我们表明这些方法不会概括为新场景。我们提出了一种新颖的方法,可自动生成逼真的场景,导致最先进的模型越野。我们通过对抗场景生成的镜头来框架问题。我们推广基于原子场景生成功能的简单而有效的生成模型以及物理约束。我们的实验表明,可以在制作预测方法失败的方式中修改来自当前基准的超过60 000 \%$ 60 \%。我们进一步表明(i)生成的场景是现实的,因为它们确实存在于现实世界中,并且(ii)可用于使现有型号强大30-40%。代码可在https://sattack.github.io/处获得。
translated by 谷歌翻译